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Hmm, every time he sees 
“banco”, he either types 
“bank” or “bench”  but if 
he sees “banco de ”,
he always types “bank”, 
never “bench” 

Man, this is so boring.
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Language Space of 972 Languages

Rough clusters of language families

(t-SNE plot)

Why Is This Interesting?

Continuous language space
• distances refer to relationship
• languages are not independent discrete units

Completely data-driven approach
• no prior knowledge
• driven by optimizing compression (with translation objective)

Interesting questions for future research
• Can we see specific linguistic properties?
• Combination with other tasks than MT

It Is A Trendy Research Topic

• Academy of Finland project: Digital language typology: mining from 
the surface to the core (Vainio, Toivonen)

• Bjerva, J. and Augenstein, I. (2018) From Phonology to Syntax: 
Unsupervised Linguistic Typology at Different Levels with 
Language Embeddings, NAACL-HLT 2018.

• Bjerva, J. and Augenstein, I. (2018) Tracking Typological Traits of 
Uralic Languages in Distributed Language Representations, the 
Fourth International Workshop on Computational Linguistics for Uralic 
Languages (IWCLUL).

• Chaitanya Malaviya, Graham Neubig, Patrick Littell. Learning 
Language Representations for Typology Prediction, EMNLP 2017.

• Ehsaneddin Asgari and Hinrich Schütze: Past, Present, Future: A 
Computational Investigation of the Typology of Tense in 1000 
Languages, EMNLP 2017

• ...

What Is Missing - What Is Next?

Many shortcomings
• data sources are limited and of very narrow domains
• the models are simple and generic
• difficult interpretation of results 
• very little interaction with general linguistics

Ideas for the future
• emerging linguistic structures (syntax / semantics)
• diachronic models, different registers, ...
• training for specific phenomena with different objectives



Thank You!
Questions or suggestions?


